

INTRODUCTION TO

DECISION MAKING

Author: ALEX ZABEO

01	Introduction: why decision analysis?			
02	Structured decision			
03	Decision processes: single criterion			
04	Decision processes: multiple criteria			
05	MCDA			
06	MCDA Software: an example			
07	Further readings			

This programme as been funded with support from the European Commission. The author is solely responsible for this publication (communication) and the Commission accepts no responsibility for any use that may be made of the information contained therein 2021-1-IT02-KA220-HED-000032050

Why decision analysis?

Let's cut this tree shading my house!

Why decision analysis?

Ops!!!

Individuals respond to complex challenges

by using intuition and/or

personal experience

Would you pay €25,00 for a coke?

Would you pay €25,00 for a coke?

02

STRUCTURED DECISION

STRUCTURED DECISION

- Improves objectiveness
- Decreases uncertainty
- Allows repeatability
- Fosters transparency
- Simplifies group decisions
- Force coherence

How to structure a decision?

- Understand the problem
- Select alternatives
- Select criteria
- Quantify criteria
- Define the Decision Maker
- Elicit preferences
- Model the process
- Take the decision

Understand the problem

How to get rid of it?

Select alternatives

Tear down the wall

Set the hive on fire

Smash the hive

Smoke the hornets and remove the hive

CULTURAL HERITAGE 2.0

Select criteria

Time

Feasibility

Cost

Quantify criteria

Time = Hours

Feasibility = not measurable, need to find indicators (location, materials...)

Cost = Euros

Define the decision maker

Elicit preferences

Model the decision process

Take the decision

03

DECISION PROCESSES: Single criterion

Four kinds of Decision processes

Group decision makers Single criterion

Single decision maker Single criterion

Group decision makers Multiple criteria Single decision maker Multiple criteria

Single criterion single DM

Participating in a lottery

- Costs 2€
- Win 25€
- Winning 25%

- Costs 1€
- Win 10€
- Winning 50%

Decision tree

 $EMV(B) = 0.50 \cdot 9 \in +0.50 \cdot -1 \in = 4.00 \in$

Four kinds of Decision processes

Group decision makers Single criterion

Single decision maker Single criterion

Group decision makers Multiple criteria Single decision maker Multiple criteria

Single criterion multiple DM

Elections

Select from 10 candidates (A to J) with 20 voters How? One head one vote

Single criterion multiple DM

Electoral College:

Voters are subdivided by geographical area

Single criterion multiple DM

OTHER METHODS

BORDA COUNT (Jean-Charles de Borda, 1733 – 1799)

- Each voter ranks N candidates
- A score is associated to each position in ranking
- Scores are summed to select the winner

CONDORCET METHOD (Marie Jean Antoine Nicolas de Caritat Marquis de Condorcet, 1743 – 1794)

- Voters ranks the list of candidates in order of preference (ranked ballot)
- The count is conducted by pitting every candidate against every other candidate in a series of hypothetical one-on-one contests
- When all possible pairings of candidates have been considered, if one candidate beats every other candidate in these contests then they are declared the "Condorcet winner"
- If there's not a "Condorcet winner" a ballot is needed

04

DECISION PROCESSES: Multiple criteria

Four kinds of Decision processes

Group decision makers Single criterion

Single decision maker Single criterion

Group decision makers Multiple criteria Single decision maker Multiple criteria

Multiple criteria single DM

Multiple Criteria Decision Analysis

Methodologies to aid decisions when multiple criteria are involved

Multiple Criteria single DM

«Buy a car» example

	Colour	Size	Maximum speed	Acceleration	Price	Consumption	Spare parts	Reliability
Fiat 500	white	small	80 km/h	-	5k€	16 km/lt	cheap	low
Beetle	blue	medium	130 km/h	50 sec	8k€	15 km/lt	cheap	medium
Minivan	yellow	big	100 km/h	120 sec	20k€	13 km/lt	cheap	medium
Ferrari	red	medium	280 km/h	6 sec	200k€	2 km/lt	expensive	high

Multiple criteria single DM

Multiple criteria single DM

Measurement scales

- Nominal scale: nominal scale datum is equal to some particular value or to count the number of occurrences of each value
 Colour (Red, blue, white...)

(Hig, medium, low...)

Reliability

- Consumption (Km/Liter)

CULTURAL HERITAGE 2.0

Multiple criteria single DM

Different measurements scales are **not comparable: how to aggregate** them in order to rank alternatives?

05

Multiple-Criteria Decision Analysis MCDA

MCDA

Multi-Criteria Decision Analysis (MCDA), also known as Multi-Criteria Decision-Making (MCDM), is about making decisions when multiple criteria (or objectives) need to be considered together in order to rank or choose between alternatives.

MCDA applications

Some examples of MCDA applications in different fields (business, nonprofits, government, health, education...):

- The local/central government which wants to prioritize its spending
- The health facility that must prioritize patients for access to clinical trial
- The HR department of a company that must shortlist job applicants
- program
- The NGO that needs to select projects or investments for funding
- The University which draw up a students ranking for scholarships
- The person who is choosing a new car (or smartphone, or house...)

MCDA Softwares

Multi-Criteria Decision Analysis is supported by **specialized software** which frees "the facilitator/analyst and decision-maker from the technical implementation details, allowing them to focus on the fundamental value judgments" (Belton & Stewart 2002, p. 345).

MCDA softwares are useful (and sometimes essential) in particular:

- for applications involving many different alternatives and criteria
- when the methods for determining the weights on the criteria are technically sophisticated

06

DECISION SUPPORT SYSTEMS: an example

DSS APACHE Project

The APACHE project (Active & intelligent PAckaging materials and display cases as a tool for preventive conservation of Cultural Heritage) has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement N. 814496 (<u>https://www.apacheproject.eu/</u>).

APACHE aims to find a solution to the long-term preservation questions raised by billions of objects collected in museum, library and archive storages by developing:

- multi-scale modelling to predict Cultural Heritage degradation;
- new generation of active and intelligent storage crates, archive boxes and display cases to improve storage and exhibition;
- collaborative decision-making tools for preventive maintenance.

DSS APACHE Project

- The **Decision Support System** developed by GreenDecision s.r.l. in the **APACHE project** is a freely available web application created to help **museum curators** maintain a clear view of their art objects, the materials they are made of and the sensors associated with them.
- The Apache Decision Support System (DSS), specifically tailored to tangible, movable and indoor cultural heritage, allows users to assess the conservation status of their artifacts and to **discover and rank the most suitable preventive measures to be applied**.
- The tool aims to support **preventive conservation decision making** for cultural heritage collections, through providing basic information concerning the behaviour of a limited number of common materials found in heritage objects, in relation to four well-known sources of environmental deterioration (temperature, relative humidity, light and airborne pollutants).

Extensive guidelines on materials and agents of deterioration

Sensors' data collection

Preventive measures repository and suggestions

Apache DSS by GreenDecision s.r.l.

07

FURTHER READINGS

- Multiple Criteria Decision Methods and Applications (1985)
- Readings in Multiple Criteria Decision Aid (1990)
- Multicriteria Decision-Aid (1992)
- Multiple Criteria Decision Analysis: State of the Art Surveys (2005)
- Trends in Multiple Criteria Decision Analysis (2010)

www.culturalheritage.eu

Follow our journey

Co-funded by the Erasmus+ Programme of the European Union

